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Abstract. Certain polynomials invariant under a permutation group G (so called G-polynomi- 
als) play an important role in several computational methods of Galois theory. Since their 
practical value depends on the degree, it is important to know G-polynomials of smallest 
possible degree. A reasonable technique to find such G-polynomials is presented, and for 
certain classes of groups an explicit description is obtained. The list of G-polynomials given 
by Stauduhar in vol. 27 of this journal is thereby enlarged and improved. As an application of 
G-polynomials, three important resolvents of quintic and sextic algebraic equations are 
computed and a parametric family of sextic equations with given Galois group is exhibited. 

Introduction. Let K be a field and X1,..., X,,, indeterminates. Let Sm be the 
group of all permutations of 1,...,m, which acts on the polynomial ring 
K[Xl,. . ., XmI by s o Xi = Xs(i), s E Sm, i = 1,...,m. Let G be a subgroup of Sm. 
Several problems in field theory-e.g., the determination of the Galois group or the 
computation of a Galois resolvent of a given algebraic equation-can be solved 
explicitly, if one can do the following (see [7, p. 276], [16], [11], [2], [3] and references 
in the last paper): 

I. Find a polynomial P belonging to G (also called a G-polynomial), i.e., a 
polynomial P in K [ X1, . . ., Xm] whose stabilizer {s E Sm I ? P = P } is equal to G. 

II. Let Z be an additional indeterminate and a, . m. , am the elementary symmetric 
functions defined by (Z-X1) ... (Z- Xm) = Zm + a1Zm-l + * * - +am. Let R E 

K[X,,. . ., Xm][Z] be the polynomial of Z-degree [Sm: G] whose zeros in 
K[ X1, . . ., Xm] are the elements of {s o P I s E Sm }. Find the unique polynomial 
R + E K[ X, . . . , Xm][Z] such that R = R (a,, . . ., am, Z). 

Suppose that Problems I and II have been solved for G 5 Sm_ If f = Zm + 
a1Zm-l + * * * +am E K[Z] is a polynomial with coefficients in K and splitting 
field K(f ), then R+(a1, . . ., am, Z) is a certain resolvent of f, i.e., its splitting field 
is a subfield of K(f). The prime factor decomposition of R +(a1,..., am, Z) in 
K[Z], for example, gives insight into the relation between G and the Galois group 
G(f) = Gal(K(f )/K) of f. By this method one can determine the group G(f ) (loc. 
cit.). 

Up to now, actual solutions of Problem II exist only in very few cases: If G is the 
alternating group Am, take R+= Z2 - D, where D is the discriminant of Zm + 
XIzm- 

- + * * * + Xm. For subgroups G of Sm, m < 4, see [10, p. 72 ff]. If m = 5 and 
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G is a maximal solvable transitive subgroup of S5, a polynomial R+ could be 
derived from a general resolvent given by Cayley [1] in tie way described in [18, p. 
674]. 

Note that for K= Q one can evade the explicit computation of R+, because P 
and a given f E Q[Z] can be supposed to have integral coefficients. They allow us 
to obtain a numerical approximation of R+(al,..., am, Z) E Z[Z], and thus 
R+(a1,..., am, Z) itself (see [16]). However, for several reasons it is desirable to 
know R * itself: The method becomes applicable to arbitrary fields K, the computa- 
tion of R+(a1,..., am, Z) is considerably simplified, and sometimes R+ is useful in 
the construction of parametric familes of polynomials with a given Galois group (an 
example for this is Proposition 6). 

In Section 3 we consider three especially important groups G, n E 20, 72, 120), 
where the subscript denotes the order of the group. Let R+ be the polynomial R+ 
corresponding to Gn. We describe the computation of R* = R+(0, X2,..., Xm, Z) 
and give the result in Table 2. Since the coefficient a1 of a given f can be easily 
removed, there is no loss of generality in taking R* instead of R +. Let us outline the 
import of the polynomials R*. 

The group G20 is the maximal solvable transitive subgroup of Ss mentioned above 
(it is unique up to conjugation). Suppose that f = Z5 + a2Z3 + a3Z2 + a4Z + a5 

E K[Z] is irreducible. If R20(a2,.. ., a5, Z) has no multiple roots (for infinite 
ground fields K this can always be attained, cf. [3]), then f is solvable if and only if 
R20(a2,..., a,, Z) has a zero in K. One can decide the latter property in many 
fields K, so we may say that R% decides the solvability of irreducible quintic 
equations. The groups G72 and G120 are maximal transitive subgroups of S6. In [3] it 
has been shown that R*0 (whose Z-degree is 6), together with some discriminants, 
allows us to find the Galois group of an irreducible sextic polynomial in most cases. 
The remaining cases are settled by R*2 (of Z-degree 10). 

In principle, it is easy to solve Problem I, if the group G in question is sufficiently 
well known (cf. [7, p. 54], [16, Theorem 1]). But in many applications the G-poly- 
nomial is a crucial point. Most of all, its degree strongly influences further 
calculations and can make them impracticable. For example, the only G120-poly- 
nomial known in the literature is of degree 10 (it goes back to the paper [14] of 
Serret in 1850, cf. also [16]; in [18, p. 679] Weber wrongly claims the existence of 
such a polynomial of degree 4). The computation of the corresponding polynomial 
R*20 requires the solution of a system of linear equations in 758 unknowns. This is 
hard to do for a computer, chiefly for reasons of memory capacity. However, the 
lowest possible degree of a G120-polynomial P is 6. Our polynomial R*0 is based on 
a sextic P; the number of unknowns is thereby reduced to 177, a problem we could 
manage much better (the memory capacity needed amounts to 5% of the degree 10 
case). 

Stauduhar [16] gives a useful list of G-polynomials of low degrees for most of the 
transitive subgroups of Sm, m < 7, which he has partially collected from the 
literature. The groups omitted are not of interest from his point of view. But like his 
G120-polynomial, his G72-polynomial is not of lowest possible degree, and two other 
polynomials (cf. the remark in Section 2) in his list do not belong to the group they 
should (however, they fulfil their purpose within the scope of [16]). Most of his 
G-polynomials seem to be ad hoc constructions. 
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The above discussion will show that it is desirable to get some insight into the 
constitution of G-polynomials. This problem is the subject of the largest part of the 
present paper. It dates back to C. Jordan and contemporaries. Following their ideas, 
we give a methodical framework for the treatment of this question (Section 1). We 
thereby obtain a practicable algorithm to find the lowest possible degree of a 
G-polynomial, as well as G-polynomials of this degree. A refined version of this 
procedure has been used to establish Table 1 (Section 2), a supplement to the list of 
[16]. Combined with recent theorems on permutation groups, our method yields an 
explicit description of all types of G-polynomials (and the degrees they can take) for 
the class of groups G c Sm such that each larger group is either Sm or Am (Section 2, 
Theorem 1). Furthermore, the possible types of lowest degree are given for the 
solvable transitive subgroups of Sm, m prime (Theorem 2). 

1. Invariants, Essential Sets, and a Problem of Jordan. For the time being, it 
suffices to assume that K is a commutative ring with identity 1 (#A 0). We continue 
to use the notations of the Introduction. We write K[X] = K[X1,..., XmI. A 
partition of (1, . . ., m } is a tuple T = (T1, . . ., Tr) of sets Tj c 1,. . .,m } such that 

U>iI T = {L,...,m} and ITl> > iTr > 1 ('"U denotes the disjoint union, 
"I" the number of elements of the corresponding set). The tuple (1T11,..., ITri) is 
called the type of T; more generally, a tuple t = (t1,..., tr) of integers with 
t1 > * * * > t r >1and t,+ ... + tr =m is called a type for m. By J we denote the 
set of all partitions of {1,...,m} and by J(t) the set of partitions of type 
t = (tl . . . 9 tr). 

Now fix a monomial Q =Xll ... X,m in K[X]. For k e No (= set of nonnega- 
tive integers) we put T(k) = (j e (1, .. ., m } I n1 = k }. Starting with the largest set 
T(k), we arrange all nonempty sets T(k), k E No, descending with their cardinality; 
whenever in this process we arrive at two or more sets T(k) of equal size, we order 
them ascending with the size of k. We thereby obtain a partition T of (1,..., m } 

uniquely determined by Q. (It will be seen later [Proposition 4 and corollary] why T 
is arranged in this way.) For example, if m = 6 and Q = X13X2X5X6, T is 
((2,3), {4, 5), {6), {1)). Moreover, the assignment Q,- T = (T1,..., Tr) yields a 
unique tuple i = (il,..., ir) e Nor, which is defined by the property 

=(H ) **( y X 

For the right side of this equation we write T1. Note that i is in the set IT= 

{(i,..., ir) E N0iall distinct, ij <ij+ if I= I>Tj]+). We obtain 

PROPOSITION 1. K[X1, ..XmE] D T= e( ED T ) 

As usual, E denotes the direct sum of K-modules. Observe that the set IT only 
depends on the type of T. We call IT the set of exponents for T. 

In the sequel let G be a fixed subgroup of Sm. The group Sm acts in a natural way 
on the set Y of partitions of {1, . . ., m i; namely, for T = (T1, . . ., Tr) e Y one 
defines s o T = (s(T), . . . , s(Tr)), s E Sm. By 37G we denote the set of orbits 
{ G o TI T E Y) of G in g-, and by 97//G a system of representatives of these orbits 
(i.e., a subset ' C Y which contains exactly one element from each orbit). We fix 
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Y//G in what follows. Let T E Y and i E IT. Then NG(T1) := (T'1 I T' c G o T) 
is called the reduced norm of T' under G. It is an element of the G-invariant ring 
GK[X] = {Q e K[X]I soQ = Q for all s?e G}. GK[X] contains all G-polynomi- 
als, and Proposition 1 implies 

PROPOSITION 2. GK[XI = X T E S/G( EIT KNG(T1)). 

Let O& be a subset of 7//G. We consider P( &) = {STE2i EGIT aT,jNG(T ) I for 
each T E O' there is an i E IT such that aTj i O} c GK[X]. By Proposition 2, 

GK [ X] = U(f (0&) I& l C7/GG). 

Thus we have divided GK[X] into a finite number of subsets, which we shall 
investigate more closely. Consider the action of Sm on the subsets O1 of 7, defined 
by s o = {s oTITe 0}, s E Sm. Let Stab(t&) be the stabilizer of O& in Sm, 
Stab(t&) = {s E Sm I s o T c O& for all T E O& }. Of particular interest are the stabi- 
lizers Stab(G o T) of the orbits G o T of G (obviously, they contain G). For 
O& C_T- we define an exponent distribution (JT)T = , as a family of nonempty 
finite subsets JT-C IT, T E- 1. If ? c / //G and P E P("l), we write P = 
Y2TEqAeiJ TaT,iNG(Ti), with JT such that aTi # 0 for all i E JT. The family 
(JT) T E is called the exponent distribution of P. 

PROPOSITION 3. Let O1 be a subset of Y7//G, and let P E P(O&) have the above 
shape. Put G(l) = nTE , Stab(G o T). Then P belongs to a group H that contains 
G(0l). H is equal to G(a/), provided there are no partitions T # T' in O1 of the same 
type with JT = JT' and aTi = aT',i for all i E JT. In particular, if K has infinitely 
many elements, P(f?) always contains G(,/)-polynomials. 

The proof is based on Propositions 1, 2 and is left to the reader. A set O1 c Y7/G 
will be called essential if G(O1) = G. It follows from Proposition 3 that G-polynomi- 
als in K[X] can be found only in sets P(QO) for essential O's. If K is infinite, such 
sets P(O&) actually contain G-polynomials; one can even prescribe their exponent 
distribution. If & c 9S//G is essential, every set f with O& c Y_ 7//G is essential, 
too. Therefore we get a good overview over all G-polynomials, if we can solve 

Problem III. Determine all minimal essential sets & c 9S//G. 
In his "Traite" C. Jordan proved the existence of essential sets consisting of one 

partition (cf. Section 2). He raised several problems concerning G-polynomials. One 
of them can be reformulated in the following way (cf. [7, p. 54]): Determine all sets 
P({T}) with {T} C7//G essential (such a P({T}) he calls "family of elementary 
functions belonging to G"). This is an important special case of Problem III. It is 
clear that one can solve Problem III for each individual permutation group G in 
finitely many steps. In most cases, however, this is not an easy task. Theorem 1 will 
give the solution for a large class of groups that admit a relatively simple answer. 

PROPOSITION 4. Let T = (T1,. .., 1,T) be a partition of 1,. . ., min. Among all 
polynomials Ti, i E IT, there is exactly one of smallest degree, namely T(01. r- 1); its 
degree is w(T) = IT21 + 2IT31 + * * * +(r - 1)jTrj. 

The proof is omitted. We call io(T) = (0, 1,.. ., r - 1) E IT the minimal exponent 
of T, and w(T) the weight of T. Both minimal exponent and weight depend only on 
the type of T. For q! C Y we define the weight of q! as w(u/) = maxy w(T) I T E 0i I 
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if qj * 0, and w(0) = -oo. One obtains the important 

COROLLARY. Let q& S Y7/G. Then deg(P) > w(Q,) for all P E P(a/). The degree 
w("l) is taken by each polynomial in P(O/) whose exponent distribution is the family 

(io(T))T E & of minimal exponents. 

Let K be infinite. In view of Propositions 3, 4 and the corollary, all G-polynomi- 
als of smallest possible degree can be formed if we know d = min{ w(O/) I &1 c S/G, 
O& essential) and all minimal essential sets of weight d (call them 1, .. . .,'k). In the 
sequel we describe the main features of an algorithm to find d and one set ',, 
1 E { 1, . . ., k }. It may happen, however, that the (always existing) G-polynomials in 
f(Yl',) are not yet best possible for applications. By means of some modifications, 
which are not difficult but tedious, the algorithm produces a subsystem of Yj, . . ., Sk 

that meets most practical requirements (for a short discussion, see explanations to 
Table 1 and Section 3). Table 1 is based on this enlarged version. 

ALGORITHM. Compute all types for the number m and order them in some way, 
ascending with their weight. Let w1 < w2 < ... be the set of all weights occurring. 
Construct in every step a group Gj and a set %j in the following way: 

Put Go = Sm, OO # 0. Stop if G = Sm; otherwise, put j = 1. 
(*) Take all types t = (tl,. . ., tr) of weight w(t) = wj. Establish for these t a 

system of representatives Y(t)//G of the orbits of G in Y(t) (note that IY(t)l = 
M!tl! *... tr!)). Put g7= U(Y(t)//GIw(t) = wj). Compute G(Yj) (notation of 
Proposition 3), and put Gj = G(tY) n Gj l1. If Gj = Gj l1, put %j = j - 1, increase i 
by 1 and go to (*); otherwise, minimize Yj, i.e., replace gj] by a minimal subset t;' 
of ! with G(Y7;') = G(Yj). If Gj-l D G(Yj) put %j = gj; otherwise, put 6/j = 

&j-l U gj and minimize %j. Stop when Gj = G; otherwise, increase j by 1 and go 
to (*). The final set 0j has the desired property. 

2. Explicit Description of G-Polynomials for Certain Classes of Groups. We adopt 
the notations above (K a commutative ring with 1 # 0). Let G C Sm be a subgroup, 
T E 717//G. In [7, p. 54], Jordan has shown that { T } is essential if the type of T is 
(1,...,1). Moreover, he showed 

PROPOSITION 5. Let G be a k-fold transitive proper subgroup of Sm, T = (T1, . . ., Tr) 
E E9J//G. Suppose that { T } is essential. Then IT11 < m - (k + 1). 

Indeed, it is easy to see that otherwise G o T = Sm o T, i.e., Stab(G o T) = Sm. The 
(m - 2)-fold transitivity of Am and the corollary of Proposition 4 yield 

COROLLARY. A subset & C Y,//Am is essential if and only if O1 contains a T of type 
(1,.. ., 1). In particular, the minimal degree d of an Am-polynomial is m(m - 1)/2 
(which is assumed by llj<k(A - Xk), the root of the discriminant of Zm + a1Zm-l 
+ . . . +am). 

In what follows we say that a subgroup of Sm is Am-maximal if it is * Sm, Am 
and maximal in the set {G c SmIG * Sm, Am). The Am-maximal groups play an 
important role in the computation of Galois groups, cf. [16]. For most of them, 
Problem III is solved simply by the converse of Proposition 5, namely 

THEOREM 1. Let G c Sm be a k-fold, but not (k + 1)-fold transitive Am-maximal 
subgroup of Sm (k = 0, if G is intransitive). 
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1. A subset O& a 7//G is essential if and only if it contains a partition T = (T1,..., Tr) 
with 

(a) 1T11 < m - (k + 1), if G is none of the groups PJL(2,8) (c S9), PJL(2,32) 

(C S33), 
(b) 1T11 < m - (k + 2), or T11 = m - (k + 1) and IT21 = 1, if G = PrL(2,8) 

(m = 9, k = 3), 
(c) 1T11 < m - (k + 2), or 1T11 m - (k + 1) and IT21 < 2, if G = PJL(2,32) 

(m = 33, k = 3). 
2. The smallest degree d of a G-polynomial is d = k + 1, except in the cases 

AGL(1,5) C S5, d = 4 (k = 2), 

G PGL(2,5) C S6, d = 6 (k = 3), 

PFL(2,8) c S9, d = 6(k= 3), 

(PFL(2,32) C S33, d = 5 (k = 3). 

Remark. The notation of groups in Theorem 1 is that of [8] (cf. also [6] and the 
introductory remarks to Theorem 2). The groups AGL(1, 5) and PGL(2, 5) are the 
groups G20 and G120 of [16] and the Introduction. All groups are uniquely de- 
termined up to conjugation only. They are actually Am-maximal, as one can see from 
the table in [15] and Corollary 4.4 in [13]. It is very likely that each 6-fold transitive 
subgroup of Sm contains Am (cf. [17], [5, p. 55]). Then the number d would be < 6, 
for all Am-maximal groups G. 

Proof of Theorem 1. The proof of assertion 1 is based on some results which have 
been used to prove Theorem 4 in [3]. We note that c 9Y,//G is essential if and 
only if there is a T = (T1, . . ., Tr) E '&' such that G o T is not the whole set Y(t), 
where t = (tl ... ., tr) is the type of T. The necessity of this condition is clear, since 
Stab(Y(t)) - Sm. The sufficiency follows from Am o T = Sm o T = Y(t) for t, > 2, 
resp. lAm o TI = IAml > IGI = IG o TI for t1 = 1, and the Am-maximality of G. 

Now let T EY be of type t = (tl,..., tr) with t1 < m - (k + 1). Suppose that 
G o T = Y(t). We distinguish two cases: 

(i) t1 > m/2. Since m - t1 < tl, (tl, m - tl) is a type for m and, by assumption, 
G acts transitively on Y(tl, m - tl). A theorem of Livingstone, Wagner, and 
Kantor [8, Theorem 1] implies that G is (m - tl)-fold transitive or m = 9, G = 

PFL(2, 8), m = 33, G = PJL(2, 32). Since m - t1 > k + 1, only the latter two 
cases are possible. 

(ii) t1 < m/2. There is a subset M c {1, . . ., r } such that t := Y(tjj e M) 
fulfils m/3 < t" < m/2. This is elementary (cf. Lemma 4 in [3]). Since G is 
transitive on Y(m - t', ti), Theorem 1 in [8] yields k > m/3. However, Am-maxi- 
mal groups with k > m/3 can occur only for m < 12 (this follows, e.g., from 
Lemmas 1, 2 in [3] and the table in [15]), namely: AGL(1, 5), PGL(2, 5), PGL(2, 7) 
(c S8); the holomorph of the group (Z/2Z)3 (c S8), PJL(2,8), and the Mathieu 
groups Mll (c S10), M12 (C S12)- 

Thus we have proved assertion 1 up to the exceptional groups in (i) and (ii), which 
require separate considerations. In most cases one can work with divisibility proper- 
ties, as we exemplify for the group PGL(2, 5). By (ii) we have to treat the types 
(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1). It suffices to show that G cannot 
be transitive on -(2, 2, 2). If this were not true, I Y(2, 2, 2)1 - 6!/(2!)3 = 90 would 
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divide IGI = 120, a contradiction. Observe also that PJL(2, 8) (resp. PJL(2, 32)) is 
a regular permutation group on S(5, 2, 1, 1) (resp. S(29, 3, 1)). 

As to assertion 2, consider the types t = (tl,..., tr) with t, < m - (k + 1). 
Among them, (m - (k + 1), k + 1) has smallest weight and is unique with this 
property, except when k + 1 > m - (k + 1), i.e., k > m72 - 1. This can happen 
only for m = 5, 6. The exceptional cases are easy. O 

Let p be a prime number and Fp the field with p elements. Consider AGL(1, p) = 

{la, b la c Fp\ {0}, b c Fp}, the group of maps la, b: Fp -- Fp: c - ac + b. A transi- 
tive solvable subgroup G c Sp is isomorphic to a subgroup of AGL(1, p). In 
particular, IGj divides p(p - 1). Using theorems of P. M. Neumann [12], [13], we 
give a rather complete description of minimal essential sets of smallest weight for 
these groups G. 

THEOREM 2. Let G be a transitive solvable subgroup of Sp, p prime. Let S9/7G = 
U (9T(t)77G I t a type for p) be a system of representatives of S9/G and d = 
min{ w(9) I O c S77G, q essential }. 

1. Let IGI be even. The minimal essential sets of weight d are all subsets O/c 

9f(t)//G with IO& = 1, where 
(a) d = 2 and t = (p - 2,2) if IGI < p(p - 1), 

(b) d = 3 and t = (p - 3, 3) if IGI = p(p - 1) andp > 7, 

(c) d = 4 and t = (2,2, 1) if IGI = p(p - 1) andp = 5, 

(d) d= -00 ifp =2,3. 
2. If G is odd, d is equal to 3. There exist the following categories of essential sets of 

weight 3: 
(a) All subsets 9C1 9(p - 2,1,1)77G with Iq = 1. 
(b) If p > 7, the set 9f(p - 3, 3)77G. 
(c)Ifp > 7and IGI< p(p - 1)/2, certain sets {T,T'} with T E9f(p - 2,2)//G, 

T' Ec- .(p - 3,3)77G. 

Every minimal essential set is contained in a set (a), (b) or (c). 

Remark. If IGI is odd and p > 7, there are always nonempty subsets 1c 
S(p - 3, 3)//G that are not essential. If, in addition, p 1 mod 3, there always 
exist minimal essential sets of category 2(c). Both assertions become clear from the 
proof. Recall that a good knowledge of all minimal essential sets of weight d can be 
of advantage in applications (cf. Section 3). 

Proof of Theorem 2. We identify Sp with the symmetric group of Fp in such a way 
that G c AGL(1, p) = { la,b a E Fp \ {0}, b E Fp }. The types of weight < 3 are: 
(p) of weight 0, (p - 1,1) of weight 1, (p - 2,2) of weight 2, and (p - 3,3) and 
(p - 2,1,1) of weight 3. 

If T is a partition of weight < 1, G o T = Sp o T. Thus d is < 1 only if G = Sp. 
This is case l(d). Let T E S9(p - 2, 2) and H C Sp be a group containing G. If H is 
not solvable, it is doubly transitive (by a theorem of Burnside), hence Ho T= 
9-(p - 2,2). For solvable H, IHoTI = IHI if IHI is odd, and Ho TI = IH1/2, 
otherwise. Therefore, if IGI is even and < p (p - 1), we have always H o TI > IG o T 
for H D G, H + G. Hence l(a) follows. 

Next let IGI = p(p - 1), i.e., G = AGL(1, p). The case l(c) being contained in 
Theorem 1, we may assume p > 7. Because of the transitivity of G on T( p - 2, 2) 
and (p- 1,1,1), d must be > 3, and a minimal essential set of weight 3 is in 
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,-(p - 3,3) (if there is any). Let T E S9(p - 3,3). Every group H D G, H # G, is 
triply transitive, by [12]; thus H o T = (p - 3,3). On the other hand, G o T # 
,f-(p - 3, 3), for otherwise, I'(p - 3, 3)1 would divide p(p - 1). This proves l(b). 

Now suppose that IGj is odd. Let G' be the group generated by G and 

-1, 0 E AGL(1, p) (G' is the unique subgroup of AGL(1, p) of order 21G1). For 
T E 9Y( p - 2,2) the arguments in the proof of l(a) yield 

(*) Stab(Go T) SP if =G =p(p- 1)/2, 
'kG' if IGI < p(p -1)/2. 

Therefored > 3. ForT cT (p - 2,1,1) and H D G we obtain IHoTI = HI if H 
is solvable, and IH o TI = p(p - 1), otherwise. This implies 2(a). 

In the sequel, let p > 7. Let u, v, w be distinct elements of Fp and TU = 

(FP\{U,V,w}, {Uv,w,}) E9f-(p -3,3). By G(u,v,w) we denote the stabilizer of 
TUVW in AGL(1, p), i.e., G(u, v, w) = {s E AGL(1, p) I s o TUVW = TUVW }. Some calcu- 
lations show that 

/3 if p 1 mod3 and w c-{(u + v + ? (u - v))/2}, 

IG(u , v, w) 2 if w c {(u + v)/2, 2u - v, 2v - u}, 

V1 otherwise, 

where 1/iT is in Fp. Let IGI <p(p - 1)/2. By (*), Stab(G o T) = G' for each 
T E 9(p - 2, 2); moreover, IG'o TUVWI > IG o TUVWl if and only if IG(u, v, w) I # 2. 
Hence a subset q& c S(p - 2, 2)//G U f(p - 3, 3)//G with at least one element 
in f-(p - 2, 2)//G is essential if and only if it contains a TUVW with IG(u, v, w)I # 2. 
This shows 2(c). 

Finally, we exhibit an essential subset of f( p - 3,3)77G. If H D G and H is not 
solvable, it has at most 1 + p(p - 1)/(21G1) orbits on f(p - 3,3). This follows 
easily from Theorem 5.2, (ii) in [13]. Thus there is a TH E 9f(p - 3, 3)//G with 
(**) IHQTHI > 21GIIlY(p - 3,3)1/(21GI +p(p - 1)) > IGI(p - 2)/6. 
Let p > 7 and Go = fl(Stab(G o TH) I H D G, H not solvable). If Go is not solvable, 
Go stabilizes G o TGO so Go o TGO = G o TGO. Therefore, IGo o TGOI < IGI, a contradic- 
tion to (**). We obtain G C Go C AGL(1, p). Now choose TUVW C 

8T(p - 3, 3)/7G such that IG(u, v, w)I = 1. Then G is the largest subgroup of 
AGL(1, p) that stabilizes G o TU, which shows that { TH I H D G, H not solvable) 
U { TUVW } is essential. 

We mention briefly the result for p = 7. If IGI = 7, 1f(45 3)77GI = 5, and each 
minimal essential subset of Y-(4, 3)77G has two elements; there are exactly six such 
sets. If IGI = 21, 1S(4, 3)77GI = 3. The minimal essential subsets q& c f(4, 3)//G 
are those with two elements. This completes the proof of the theorem. O 

Next we consider the transitive groups G C Sm for m < 7. They are the subject of 
several tables ([16], [15], [11]). With the exception of most subgroups of S6, all of 
them are covered by Theorems 1 or 2. So we know the essential sets of smallest 
weight explicitly, and it is easy to establish the corresponding G-polynomials. As an 
example, take G = G20 = AGL(1, 5) c S5, with generators (12345), (1243). This 
group is doubly transitive, and by Theorem 1 the minimal essential sets of smallest 
weight d = 4 have the shape { T }, T c f(2, 2, 1). Each T c f(2, 2, 1) is stabilized 
by at most 1 or 2 elements of G, hence IG o TI = 20 or 10. The latter case holds for 
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T = ({1, 4), {2, 3), {5}); we obtain the G-polynomial 

NG(Tio(T)) X12(X2 X5 + X3X4) + X2(X1X3 + X4X5) + X(X1X5 + X2X4) 

SX4 XlX2 + X3X5) + X52(X1X4 + X2X3) 

This polynomial has been found by Serret [14] in 1850. We have used it to compute 
R20 (Section 3). 

For reasons discussed in the Introduction, we give a new table for m = 6. Since it 
is a supplement to [16, Table 1], we adopt the notation of the article cited. This 
means that the groups in our list are equal to those of [16] in the strict set-theoretical 
sense. This is important, because conjugate groups lead to permuted G-polynomials. 
Generators of the groups can be found in [16]. 

TABLE 1 
Essential sets and G-polynomials for groups of degree six 

Nr. name structure imp. d essent. set G-polynomial 

1. G120 PGL(2,5) - 6 (12135146) (2 4)+(2 4)+(2 6)+(2 3)+( 35) 

2. G72 S3 i S2 A 2 {1234156) 12 + 23 + 31 + 45 + 56 + 64 

3. G60 PSL(2,5) - 3 {123 1456) 124 + 126 + 134 + 135 + 156 
+235 + 236 + 245 + 346 + 456 

4. G48 S2 i S3 B 2 {1234156) 12 + 34 + 56 

5. G3 (s3 i s2) n A6 A 7 {141251316} 
123 

+ 
123 

+ 123+ 
456 

+456 + 
456 

5.36 (31S)A6 A 7{4236) 465 546 654 123 231 312 

6. G6 2 S3xS | A 6 {14125136) (2 6)+( 6 + 2) 
-{135 1 2 14 16} [153] + [246] + [136] + [254] 

7. G4 5 B 6 .+[145] + [263] + [164] + [235] 

13 1 Il l 125 46) } (2 45)+3 6 ) 2 +(2 5)+(4 2) 

8. G24 -A4 X S2 B 3 {1231456) 125 + 126 + 134+ 234 + 356 + 456 

{12351416} 132+ 352 + 512+ 142 +462 + 612 

+242 + 45 2+ 522 + 232 + 36 2+ 622 

9. G24 (S2 1 S3) n A6 B 3 {1351246) 136 + 235 + 246 + 145 

10. G18 A3 1 S2 A 3 {12341516) 122+ 232 + 312+ 452 +562 + 642 

11. G'2 dihedral A,C 2 {2346115) 15 + 53 + 34 + 42 + 26 + 61 

12. G 2 ~A4 B 3 {1351246,3 2 12 
H | B 131 {123 1456} aP(G24) + bP(G24) 

13. 1 6 A, D F3 1246135}1 aP(G18) + b(14 + 26 + 35) 

14. G62 cycic A,C 3 {23461115} 152+ 532 + 342+ 422 + 262+ 612 

A = {123}, {456}}),-B ={12}, {34}, {56}), C ={14}, {25}, {36}), 

D = {14}, {26}, {35}) , E = ({ 16}, {25}, {34}) , F= ({ 15}, {24}, {36}). 
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Explanations to Table 1. 1. In Column 3 " I " denotes the wreath-product of groups 
(cf. [6, p. 94]). Column 4 gives the imprimitive systems of the group; e.g., group nr. 
11 permutes the sets in A and C. Column 5 contains the smallest degree d of a 
polynomial belonging to the group, and Column 6 gives minimal essential sets of 
weight d. The notation of these sets has been reduced. So {1351246, 1231456) 
stands for the set consisting of the partitions ({1,3,5), {2,4,6)) and ({1,2,3), 
{4,5,6)). Column 7 gives the G-polynomials derived from the essential sets in 
Colunm 6. Most essential sets consist of only one element T; then the corresponding 
G-polynomial is simply NG(Tio(T)). Only for groups nr. 12, 13 has the set the shape 
{T, T'}, and the G-polynomial is aNG(Tio(T)) + bNG(T'io(T )), with a, b E K\ {O} 
distinct; the reduced norms coincide with the polynomials belonging to the groups in 
brackets. All polynomials are written in an abbreviated way. Instead of Xii we write 
ii, so that ij2 + k12 + * denotes the polynomial XiX 2+ XkX72+ *--. The 
expression ( r 

(groups nr. 1, 6, 7) is defined as i2r2(]s + kt) +j2s2(ir + kt) + k2t2(ir + js). The 
symbol rtk (nr. 5) stands for i3r2(js + kt) +j3s2(ir + kt) + k2t2(ir + js). Finally, 
[ik] = ij2k3 +jk2i3 + ki2j3 (nr. 7). 

2. The sets of Column 6 have been selected according to the following principles: 
Two minimal essential sets of weight d are considered equivalent if the types 
occurring in them are the same. We take only one representative from each 
equivalence class, in such a way that the number of monomials in the corresponding 
G-polynomial is the smallest possible. However, an equivalence class is omitted 
altogether if there is another one whose types form a strict subset of the types of the 
class in question. This is the case only for groups nr. 12 and 14. Up to these 
reductions, our list of minimal essential sets of smallest weight is intended to be 
complete. 

Remark. The polynomials of [16, Table 1] professedly belonging to G12 and G6, 
actually are G48-polynomials, where the groups G48 are defined by their imprimitive 
systems C (in case of G12) and D (in case of G6)- 

3. Computation of Resolvents for Degrees Five and Six. Let the notations of 
the Introduction hold, in particular, let K be a field. The polynomial R E 
K[X1,..., Xm, Z] connected with the group G has the shape R = HI(Z - s o P), s 
running through a system of representatives of SPrIG, the left cosets modulo G (cf. 
Introduction). The coefficients bi of R = Z' + b1Z'-1 + - - - + b, are symmetric in 

Xi ..., Xm, so R+= Z' + bZ'- + *-+b+ E K[X, Z] exists with R= 

R+(alg ... ., aG, Z). The coefficients bi c M. n X1nl ... Xnm can be determined 
by interpolation, as described, e.g., in [4]. For each i = 1,..., 1 this method leads to 
a system of linear equations in the unknowns c(') The number of unknowns 
depends on the knowledge of finite sets Mi c Nom such that each exponent 
(nl, .. ., nm) with nonvanishing Cn.. n is in M,. In order to get a feasible proce- 
dure, one has to make Mi small. A first step is to work with R*= 
R+(O, X2X..., Xm, Z) instead of R+. In the case of R +0, for example, the set M6 
(computed by the method below) has 173 elements, whereas the respective set for 
R"0 has cardinality 35. The degrees of b, in each set of variables {X1,. .., Xk), 
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k < m, determine a system of linear inequalities for the tuples in Mi. The full system 
(which seems not to be generally known, though one or two inequalities are given in 
several algebra books) is due to [9]. It is very advantageous, since the sets Mi thereby 
found are, as a rule, rather close to the sets of actually occurring exponents. For 
instance, in the case of R*20 one gets IMil = 2, 9, 23, 51, 99, 177, i = 1, . .. , 6, and 2, 
9, 23, 45, 86, 146 actual exponents in br, . .., b6, respectively. In the last analysis, the 
size of Mi depends on the types constituting the G-polynomial P, because they 
determine the various degrees of bi. It is advisable to select candidates for P 
according to the principles described in the explanations to Table 1. Sometimes the 
very best P can be found only by trial. 

Table 2 contains the polynomials R* for the groups G = Gn, n = 20, 72, 120. 
They have been computed by a mod p-version of the method just described. The 
underlying Gn-polynomials are those of Section 2. The information given for each 
coefficient b* consists of the list of exponents (nl, .. ., nm) (written without com- 
mas, since all n are < 9) and the list of numerical coefficients cnQ. n c in the 
respective order. The R* are defined over arbitrary fields K. Obviously, it is tedious 
to copy the whole polynomial R*0, say, from Table 2 by hand. However, polynomi- 
als in K[Z] of interest often have two or more vanishing coefficients, and then only 
a small part of R* is needed, which can be found very quickly. 

We give an illustration both of this fact and the import of R*0. Let f = Z6 + aZ 
+ b { K[Z]. By Table 2, R[a, b]:= R+0(0, 0, 0, 0, a, b, Z) has the shape 

R[a, b] = Z6 + 18bZ5 - 135b2Z4 - 3240b3Z3 

+(93312b5 + 3125a6)Z - 186624b6 + 40625a6b. 

This polynomial can be written as 

R[a, b] = (Z - 3b)2(Z - 12b)(Z + 12b)3 + 55a6(Z + 13b); 
we obtain an analogue of a theorem of Weber on solvable quintic tnnomials [18, p. 
676], namely 

PROPOSITION 6. Let K be a field of characteristic > 5, f = Z6 + aZ + b E K[Z] 
irreducible, a # 0. Consider the Galois group G(f ) as a subgroup of S6, according to 
its action on the roots off. Then G(f ) is contained in a group PGL(2, 5) (_ S5) if and 
only if there exist u, v E K such that 

(*) a = -(u - 3v)2(u - 12v)(u + 12v)3/(55(u + 13v)), 

b = av. 
Proof. Suppose that G(f) C PGL(2, 5). Then R[a, b] has a zero in K (cf. [16], 

[2]), say x. Put x = au, b = av, u, v E K. R[a, b](x) = 0 implies u # -1 - 13v, 
and (*) follows as in [18]. Conversely, let a, b be defined by (*), a #L 0, and f 
irreducible. Then au is a root of R[a, b]. One must show that R[a, b] has no 
multiple zero y in any extension of K. Suppose y exists. Since 

0 = dR[a, b] (y) = 6(y - 3b)(y + 12b)2(y2-6by-36b2) + 55a6, 

we can eliminate 55a6 in the equation R[a, b](y) = 0, and obtain 

0 = -5(y - 3b)(y + 12b)2g(y), 

with g = Z3 + 9bZ2 - 108b2Z - 648b3. Obviously, g(y) = 0, and reduction of 
dR[a, b]/dZ modulo g yields 0 = -66b5 + 55a6. This means a = 66v5/55, b = 

66v6/55, and f has the (double) root -6v/5 in K, a contradiction. C1 
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Remarks. 1. For K = Q the polynomials f defined by (*) in general have 
G( f ) = PGL(2, 5). 

2. The author has computed some other polynomials R* for subgroups of 5. and 
S6, among them one belonging to the intransitive group S3 C S5. This R* yields a 
Galois resolvent (i.e., the minimal polynomial of a generator of the splitting field of 
f ) for each f with G(f ) = AGL(1, 5). It should be noted that also for degrees higher 
than six such computations are feasible, at least when two or more variables Xi in 
R + are specialized to zero. 

3. All polynomials R* given in Table 2 have been tested in various relevant 
numerical examples. In particular, the (a priori known) Galois groups of several 
polynomials in Q[Z] have been verified in this way. Therefore, the author is 
convinced of the accuracy of Table 2. 

TABLE 2 

Resolvents belonging to groups of degree six 

1. R Z6 + b*Z5 + *. + b6(K [X1...,X5, Z] 

b (00010) 

-8 

b- (00101) (00020) (02010) (01200) 
2 

-50 40 -6 2 

b (01002) (00111) (02101) (00030) (02020) (01210) (00400) 
3 

-125 400 15 -160 40 -21 2 

b4: (01012) (00202) (00121) (02111) (01301) (00040) (02030) 
(01220) (04020) (00410) (03210) (02400) 

500 625 -1400 90 -50 400 -136 
76 9 -8 -6 1 

b : (00004) (01103) (01022) (00212) (03012) (02202) (05002) 
(00131) (02121) (01311) (04111) (00501) (03301) (00050) 
(02040) (01230) (04030) (004220) (03220) (02-410) (01600) 

3125 -625 500 -2750 -525 325 108 
2400 -260 -105 -117 58 31 -512 

256 -76 -32 -3 51 -19 2 

* 

b6: (00014) (02004) (01113) (01032) (00222) (03022) (02212) 
(05012) (01402) (04202) (07002) (00141) (02131) (01321) 
(04121) (00511) (03311) (06111) (02501) (05301) (00060) 
(02050) (01240) (04040) (00430) (03230) (06030) (02420) 
(05220) (01610) (00800) 

-937S 3125 -1250 -2000 3250 1200 -725 
-99 -125 -150 -27 -1600 -160 590 
196 -124 12 18 -12 -4 256 

-192 -16 48 17 -128 -4 65 
1 -13 1 



INVARIANT POLYNOMIALS AND THEIR APPLICATION IN FIELD THEORY 793 

TABLE 2 (continued) 

2. R72 = ZlO + b*I9 + + b*10 K X, X6, 

b i: (010000) 

4 

b 2: (000100) (020000) 

-6 6 

b 3: (000001) (010100) (002000) (030000) 

-66 -26 3 4 

b4: (010001) (001010) (000200) (020100) (012000) (040000) 

-324 36 1 -42 9 1 

b5: (000101) (020001) (000020) (011010) (010200) (002100) (030100) 
(022000) 

-114 -642 123 120 18 -12 -30 
9 

b6 : (000002) (010101) (002001) (030001) (010020) (001110) (021010) 
(000300) ( 020200) (012-100) (040100) (004000) (032000) 

129 -482 138 -640 521 -138 148 
24 49 -40 -8 3 3 

b (010002) (001011) (000201) (020101) (012001) (040001) (000120) 
(020020) (011110) (003010) (031010) (010300) (002n00) (030200) 
(022100) (014000) 

384 342 -80 -752 366 -320 -94 
898 -470 36 80 80 2 48 
-44 6 

* 

b8 (000102) (020002) (000021) (011011) (010201) (002101) (030101) 
(0220O1) (050001) (010120) (00202-0) (030020) (002170) (021110) 
(013010) (041010) (000400) (003O00) (012200) (040n00) (004100) 
(032100) (024000) 

120 384 66 852 -240 -6 -512 
324 -64 -246 51 788 -24 -588 

84 16 16 e8 16 16 -6 
-16 3 

b (000003) (010102) (002002) (030002) (010021) (001111) (021011) 
9 (000301) (020201) (012101) (040101) (004001) (032001) (001030) 

(000220) (020120) (012020) (040020) (011210) (003110) (031110) 
(023010) (010400) (00n300) (030300) (022 200) (014100) (006000) 

-64 256 48 128 112 -24 704 
-32 -224 -8 -12^8 -12 96 14 

8 -216 86 352 -40 6 -32C0 
64 32 -8 32 32 -14 1 
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TABLE 2 (continued) 

R72 (continued) 

b10: (010003) (000202) (020102) (012002) (000121) (020021) (011111) 
(031011) (010301) (002201) (030201) (014001) (000040) (011030) 
(0102-20) (002120) (030120) (022)2020) (05002-) (021210) (013110) 
(041110) (033010) (020400) (012300) (004200) (032200) (0214100) 
(016000) 

-64 16 128 48 -8 48 -16 
192 -32 -8 -64 -12 1 12 

8 2 -64 36 64 -16 4 
-64 16 16 -8 1 16 -8 

1 

3. R*2 = Z6 + b*Z5 + + b*6e K EX x 6, Z. 

b (000001) (010100) 

18 2 

b2 (000002) (010101) (002001) (030001) (010020) (001110) (021010) 
(000300) (020200) 

-135 114 -54 -8 -50 30 2 
-6 1 

* 

b3: (000003) (010102) (002002) (030002) (010021) (001111) (021011) 
(000301) (020201) (012101) (040101) (004001) (032O001) (001030) 
(000220) (020120) (0120n0) (040020) (011210) (003110) (031110) 
(010400) ( 00n300) 

-3240 1440 -1353O0 -304 -900 990 126 
-304 232 -198 -16 27 2 -125 

50 -120 15 2 66 -9 2 
-16 2 

b . (010103) (002003) (030003) (010022) (001112) (021012) (000302) 
4 (02-0202) (012102) (040102) (004002) (032002) (060002) (001031) 

(000221) (020121) (012021) (040021) (011211) (003111) (031111) 
(023011) (051011) (010401) (002-301) (030301) (022201) (050201) 
(014101) (042101) (020040) (011130) (031030) (010320) (0027220) 
(030220) (022120) (050120) (042020) (001410) (021310) (013210) 
(000600) (020500) (012-400) 

-4536 -1944 -1224 1350 3240 756 -1224 
4320 -4752 -688 972 234 16 -1125 

450 -3480 1485 218 2484 -891 84 
-54 -8 -688 234 168 -144 -8 

27 2 625 -875 -50 250 225 
-70 45 2 1 -120 28 -9 

16 -8 2 
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TABLE 2 (continued) 

R 120 (continued) 

b5 (000005) (010104) (002004) (030004) (010023) (001113) (021013) 
(000303) (0202-03) (012103) (040103) (004003) (032003) (06003) 
(001032) (000222) (020122) (012022) (04002-2) (011212) (003112) 

(031112) (023012) (051012) (010402) (002202) (030302) (022202) 

(050202) (014102) (042102) (070102) (034002) (062002) (000141) 
(020041) (011131) (003031) (031031l) (010321) (002221) (030221) 
(022121) (014021) (04202-1) (070021) (001411) (021311) (013211) 
(041211) (005111) (033111) (061111) (025011) (053011) (0O060O1) 
(02-0501) (012401) (004301) (000060) (011050) (010240) (002140) 
(030140) (022040) (050040) (001330) (021230) (013130) (041130) 
(0O5030) (033030) (061030) (000520) (020420) (012320) (040320) 
(004220) (032220) (024120) (011510) (003410) (031410) (0n3310) 
(010700) (OO2600) 

93312 -85536 163296 16416 48600 -174960 33696 
16416 6048 -43416 -4224 11664 864 -96 
40500 37800 -40320 4590 7192 39096 -10044 
-6144 2052 104 -4224 864 4032 -2376 

-416 324 312 32 -54 -8 -22500 
12750 -109 50 2025 -2770 -560 -270 -2144 

4014 -918 -32 -8 552 60B -756 
192 162 -150 -8 27 2 -96 

-416 312 -54 3125 -625 750 375 
850 325 58 -350 -1340 -180 -112 
108 31 2 56 352 574 E 

-162 32 -9 -264 66 -8 B 
32 -B 

b (000006) (010105) (002005) (030005) (010024) (001114) (021014) 
6 (000304) (020204) (012104) (040104) (004004) (032004) (060004) 

(001033) (000223) (020123) (0127023) (040O03) (011213) (003113) 
(031113) (023013) (051013) (010403) (00n303) (030303) (02-_'0'3) 
(050203) (042 103) (070103) (034003) (062003) (000142) (020042) 
(011132) (003032) (031032) (010322) (002222) (030222) (022122) 
(05 012-2) (014022) (0420272) (070022) (001412) (021312) (013C212) 
(041212) (005112) (033112) (061112) (053012) (000602) (020502) 
(01 2402) (0404.02) (004302) (032302) (060302) ( 024202) (052202) 
(0800n2) (07n102) (064002) (000061) (011051) (010241) (002141) 
(030141) (022041) (050041) (001331) (021231) (013131) (041131) 
(005031) (033031) (061031) (000521) (020421) (012321) (040321) 
(004221) (032221) (060221) (024121) (052121) (080121) (016021) 
(044021) (07202-1) (011511) (003411) (031411) (023311) (051311) 
(015211) (043211) (035111) (010701) (002601) (030601) (0222501) 
(050501) (042401) (034301) (010160) (002060) (001 2O) (O21 1rO) 
(041050) (000440) (020340) (012240) (040240) (032140) (060140) 
(024040) (052040) (080040) (011430) (003330) (031330) (023230) 
(051230) (015130) (043130) (007030) (035030) (010620) (202520) 
(030520) (022420) (050420) (014320) (0427320) (006220) (0342200) 
(021610) (013510) "(005410) (020800) (012700) (004600) 
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TABLE 2 (continued) 

-186624 248832 1026432 -29376 -129600 -1477440 536544 
-29376 -93744 -178848 19296 46656 -9936 144 
432000 5n9200 -249480 -165240 48408 139104 -7776 
-68976 17496 -2544 19296 -9936 6912 -864 

-3072 2520 -96 -432 2 4 -292500 7012 5 
72900 29700 -11360 -22080 -29160 -7992 22572 

3032 -3564 222 -232 6336 14784 -12204 
-1312 1944 324 336 -84 144 -3072 

2520 1296 -432 -752- -32 108 6 
16 -8 1 40625 - 2062 5 -7750 -1 1 01 5 

5550 225 954 11700 -1 2020 1935 -3616 
54 923 108 -2472 1096 1962 -169 

-486 2262 -160 -1215 -106 -8 162 
36 2 -144 36 -480 336 176 

-54 -80 9 -96 24 -32 a 
-32 16 -2 3125 3125 -3125 625 

-125 625 250 -125 375 525 38 
-150 -12 1 -200 50 -700 -A1 85 

-36 198 25 -27 -4 56 -14 
152 370 8 -210 -6 27 1 

-144 72 -9 16 -8 1 
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